

Grado de Ingeniería Electrónica de Comunicaciones

Curso 2025-2026

Ficha de la asignatura:	Electromagnetismo I				Código 80597		05971	
Materia:	Electromagnetismo			Módulo:	Fundamental			
Carácter:	Obligatorio			Curso:	2°	Semestre: 1°		1°
Créditos (ECTS)	6		4		2			-
Presencial	-	Teóricos	32%	Problemas	32%	Laboratorio		-
Horas Totales			35		18			-

Profesor/a Coor-	Pedro Antoranz Canales					EMFTEL
dinador/a:	Despacho:	03.106.0	e-mail	anto	oranz@u	cm.es

Grupo	Profesores	T/P*	Dpto.	e-mail	
único	Pedro Antoranz Canales	T/P	EMFTEL	antoranz@ucm.es	

^{*:} T:teoría, P:prácticas

Cruno	H	lorarios de clase	es	Tutorías (lugar y horarios)			
Grupo	Día	Horas	Aula	rutorias (lugar y liorarios)			
único	L X J	14:30 – 16:00 14:30 – 16:00 17:00 – 18:00	2	Despacho 03.106.0 Semestre 1: M, 15:30-17:00; V, 10:00-11:30 Semestre 2: M, 15:30-17:00; J, 15:30-17:00			

(3h no pres.): Horas de tutoría no presenciales a través de correo, campus virtual, ...

Resultados del aprendizaje (según Documento de Verificación de la Titulación)

- Comprensión y dominio del comportamiento de los campos electrostáticos y magnetostáticos tanto en el vacío como en medios materiales.
- Comprensión de las leyes experimentales fundamentales de los campos eléctrico y magnético.
- Análisis de los fenómenos variables con el tiempo. Inducción y corriente de desplazamiento.
- Destreza en la resolución de problemas prácticos con campos electromagnéticos estáticos y de variación lenta.

Breve descripción de contenidos

Propiedades de los campos eléctrico y magnético y técnicas de cálculo. Corrientes eléctricas en conductores. Máquinas eléctricas

Conocimientos previos necesarios

Los adquiridos en Física I y II. Cálculo. Álgebra.

Programa de la asignatura

1.- Fundamentos

Revisión de fundamentos matemáticos. Los campos y sus fuentes. Relaciones constitutivas básicas. Formulación integral, diferencial y fasorial de las ecuaciones de Maxwell. Corriente de desplazamiento. Condiciones de contorno.

2.- Técnicas de cálculo

Cálculo de potenciales escalares. Desarrollos multipolares. Método de imágenes. Teorema de reciprocidad. Análisis de múltiples conductores cargados. Técnicas numéricas básicas.

3.- Campos en medios materiales

Vector y cargas de polarización. Vector y corrientes de imanación. Polos magnéticos. Relajación dieléctrica. Dispositivos piezoeléctricos. Medios no lineales.

4.- Corrientes eléctricas

Naturaleza y tipos de corriente eléctrica. Ecuación de continuidad y ley de Kirchhoff para la corriente. Campos generados por corrientes. Resistencia eléctrica. Resistencia térmica y disipación de calor. Corrientes inducidas.

5.- Máquinas eléctricas

Revisión de corrientes polifásicas y transformadores. Motores eléctricos. Generadores de electricidad. Sistemas de almacenamiento de energía eléctrica.

Bibliografía ordenada alfabéticamente

Teoría

- D. K. Cheng, "Fundamentos de Electromagnetismo para Ingeniería." Pearson Educación, Addison-Wesley Iberoamericana, 1998.
- M. H. Nayfeh y M. K. Brussel, "Electricity and Magnetism", J Wiley and Sons, 1985.
- J.R. Reitz, F.J. Milford y R.W. Christy, "Fundamentos de la Teoría Electromagnética." Addison-Wesley Iberoamericana, 2004.
- M. Sadiku. "Elementos de Electromagnetismo". Oxford University Press, 2004.
- F. Sánchez-Quesada, L. L. Sánchez Soto, M. Sancho y J. Santamaria, "Fundamentos de Electricidad y Magnetismo", Síntesis, 2000.

Problemas

- A.G. Fernández, "Problemas de campos electromagnéticos ", McGraw-Hill (Serie Schaum), España, 2005
- J.L. Fernández, M.J. Pérez Amor. "Electromagnetismo. Problemas resueltos". Editorial Reverté, 2012.
- E. López, F. Núñez: "100 problemas de electromagnetismo". Alianza Editorial, 1997.
- V. López, "Problemas resueltos de electromagnetismo", Ramón Areces, 2003.

Recursos en internet

Se detallan en el espacio virtual de la asignatura.

Metodología

Se impartirán clases de teoría con ejemplos y aplicaciones, y clases de problemas. Se ofrecerán actividades adicionales para complementar la formación y valorar tanto las iniciativas personales como el trabajo grupal.

Evaluación

Realización de exámenes (N_{Final})

Peso:

70 %

Se realizará un examen parcial voluntario, no liberatorio (a mediados del semestre) en horario de clase y un examen final. El examen parcial tendrá una estructura similar al examen final. La calificación final, relativa a exámenes, N_{Final} , se obtendrá de la mejor de las opciones:

$$N_{Final} = 0.3 \cdot N_{Ex_Parc} + 0.7 \cdot N_{Ex_Final}$$

 $N_{Final} = N_{Ex_Final}$

donde N_{Ex_Parc} es la nota obtenida en el examen parcial y N_{Ex_Final} es la calificación obtenida en el examen final, ambas sobre 10.

Los exámenes tendrán una parte de cuestiones teórico-prácticas y otra parte de problemas.

Otras actividades (A)

Peso:

30 %

Se realizarán, entre otras, las siguientes actividades de evaluación continua: Problemas y ejercicios entregados a lo largo del curso de forma individual o en grupo, sobre los que se realizarán pruebas escritas individuales a través del Campus Virtual o en clase.

Calificación final

La calificación final será la mejor de las opciones

$$C_{Final} = 0.7 \cdot N_{Final} + 0.3 \cdot A$$

 $C_{Final} = N_{Final}$

Solo se contemplará la segunda posibilidad, $C_{Final} = N_{Final}$, si esta nota es mayor o igual que 5. Asimismo, no será posible superar la asignatura si N_{Final} es menor que 4. En ese caso, esta será el valor de C_{Final} que constará en actas.

La calificación de la convocatoria extraordinaria se obtendrá siguiendo exactamente el mismo procedimiento de evaluación.